The glucose paradox of cerebral ischaemia.

نویسنده

  • S Mehta
چکیده

 Copyright 2003 Journal of Postgraduate Medicine. Online full text at http://www.jpgmonline.com The issue of hyperglycaemia in patients with acute stress continues to generate a lot of debate. Up to 50% of patients with stroke are reported to have hyperglycaemia at admission to the hospital and up to 25% of those admitted to the hospital with stroke may report history of diabetes mellitus. This increased incidence of hyperglycaemia in patients with stroke could partly be explained on the basis of increased prevalence of diabetes mellitus in the society. It is also well known that blood glucose levels are increased in the first 12 hours after the onset of acute stroke (as in any other stressful situation including myocardial infarction). This magnitude of the rise in blood glucose level is supposedly related to the severity of the stroke. This could be another reason for hyperglycaemia noticed in patients with stroke. Although there is no unanimity amongst researchers, several studies, both animal and human, report that hyperglycaemia occurring at the onset of stroke is associated with a worse prognosis, irrespective of patient’s age, severity of the condition, or stroke sub-type. It exacerbates the ischaemic lesions and is associated with an increase in the brain oedema and augmentation in the size of the infarct. It is also associated with a decrease in cerebral blood flow. Positive association has been shown between the blood glucose level at admission and stroke volume with higher glucose levels associated with larger stroke volumes. Patients with transient hyperglycaemia have been reported to have larger ischaemic lesions on computerized tomographic scans and a higher 30-day mortality than that in normoglycaemic individuals. The worse outcome manifests itself in terms of longer hospital stay, higher inpatient hospital charges and increased short-term and long-term mortality. Researchers have invoked several mechanisms to explain the phenomenon of worsening of prognosis with hyperglycaemia. They point out that hyperglycaemia whether resulting form acute stress, poor glycaemic control in diabetic patients or both, worsens the prognosis through augmentation of acute brain injury and precipitation of intra-cerebral haemorrhage (ICH). Possible mechanisms responsible for augmenting acute ischaemic brain injury include increased brain tissue acidosis, accumulation of extra-cellular glutamate, increased blood–brain barrier permeability, cerebral oedema formation, decreased vascular reactivity or a combination of these. Hyperglycaemia-related increase in the size of infarction in animal studies has been blamed on impairment of mitochondrial function and facilitation of acidosis. Hyperglycaemia with reperfusion may augment ischaemic tissue acidosis, but it may The Glucose Paradox of Cerebral Ischaemia

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bench-to-bedside review: A possible resolution of the glucose paradox of cerebral ischemia

The glucose paradox of cerebral ischemia (namely, the aggravation of delayed ischemic neuronal damage by preischemic hyperglycemia) has been promoted as proof that lactic acidosis is a detrimental factor in this brain disorder. Recent studies, both in vitro and in vivo, have demonstrated lactate as an excellent aerobic energy substrate in the brain, and possibly a crucial one immediately postis...

متن کامل

Simulating NIRS and MRS Measurements During Cerebral Hypoxia-Ischaemia in Piglets Using a Computational Model

We present a group analysis of the changes in cerebral haemodynamics, and the oxidation state of cytochrome-c-oxidase measured using broadband near-infrared spectroscopy (NIRS) and intracellular pH measured by phosphorous ((31)P) magnetic resonance spectroscopy (MRS) during and after cerebral hypoxia-ischaemia (HI) in 15 piglets. We use a previously published computational model of cerebral met...

متن کامل

Cerebroside-A provides potent neuroprotection after cerebral ischaemia through reducing glutamate release and Ca²⁺ influx of NMDA receptors.

Excessive presynaptic glutamate release after cerebral ischaemia leads to neuronal death mainly through excessive calcium entry of N-methyl-D-aspartate receptors (NMDARs). Our recent study reported that cerebroside can open large-conductance Ca²⁺-activated K⁺ (BKCa) channels. The present study evaluated the effects of cerebroside-A (CS-A), a single molecule isolated from an edible mushroom, on ...

متن کامل

Hypothermia decreases the cerebral metabolic rate for glucose and oxygen and reduces the loss of high energy phosphates during ischaemia and prevents or ameliorates secondary cerebral energy failure

Experimental evidence of the value of post-insult cooling Studies of mild hypothermia for neural rescue after perinatal asphyxia commenced when experimental studies in animals suggested that mild hypothermia applied soon after hypoxia-ischaemia lessened pathophysiological abnormalities and improved functional outcome . Several studies confirmed that post-insult cooling reduced injury in immatur...

متن کامل

The effects of levosimendan on brain metabolism during initial recovery from global transient ischaemia/hypoxia

BACKGROUND Neuroprotective strategies after cardiopulmonary resuscitation are currently the focus of experimental and clinical research. Levosimendan has been proposed as a promising drug candidate because of its cardioprotective properties, improved haemodynamic effects in vivo and reduced traumatic brain injury in vitro. The effects of levosimendan on brain metabolism during and after ischaem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of postgraduate medicine

دوره 49 4  شماره 

صفحات  -

تاریخ انتشار 2003